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T
he National Council of Teachers of 
Mathematics (NCTM) has consistently 
recognized communication as essential 
to reform-oriented mathematics teach-
ing (NCTM 1991, 2000). “Through 

communication, ideas become objects of reflec-
tion, refinement, discussion, and amendment. The 
communication process also helps build meaning 
and permanence for ideas and makes them public” 
(NCTM 2000, p. 60). However, talking does not 
ensure that thinking and understanding follow. 
The quality and type of discourse affect its poten-
tial for promoting mathematical understanding 
(Kazemi and Stipek 2001). 

In most mathematics classes, the teacher’s ques-
tioning and feedback are used to convey informa-
tion to students, leading toward the teacher’s point 
of view. This type of discourse is referred to as uni-
vocal discourse. In contrast, dialogue that involves 
give-and-take communication in which students 
actively construct meaning is called dialogic dis-
course (Knuth and Peressini 2001). It has been 
found that the teacher’s role is critical not only in 
how the discourse plays out in a mathematics class 
but also in outcomes of student learning (NCTM 
1991, 2000). For example, recent evidence sug-
gests that simply increasing the quantity of student 
talk may not improve mathematical understanding 
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since students may not have the resources to con-
struct or verify mathematical ideas or conventions 
(Nathan and Knuth 2003). There are times when 
the teacher may need to step in (Rittenhouse 1998); 
indeed, there are those who argue convincingly that 
“telling” should not be eliminated from teachers’ 
repertoires (Lobato, Clarke, and Ellis 2005). 

In this article, we propose a strategic mix of univo-
cal and dialogic discourse that, when used in conjunc-
tion with an inductive model of teaching, can promote 
mathematical understanding in students. The induc-
tive model was developed from analysis of one pur-
posefully selected teaching episode that took place in 
an eighth-grade algebra class taught by Mr. Larson 
(all names in this article are pseudonyms), a nation-
ally certified teacher with thirty-five years of teaching 
experience. The description of the teaching associated 
with the model illustrates how Mr. Larson orches-
trated classroom discourse that included some trans-
mitting, or “telling,” of ideas (univocal discourse) 
as well as discourse in which students and teacher 
exchanged ideas. This latter discourse resulted in the 
generation of new mathematical meaning for some or 
all of the participants (dialogic discourse). 

USING FEEDBACK AND QUESTIONING  
IN CLASSROOM DISCOURSE
The discourse in Mr. Larson’s mathematics class was 
influenced by his use of verbal feedback and ques-
tioning. For example, when Mr. Larson followed up 
an interesting result by asking, “I wonder if that’s 
always true,” he modeled metacognition—that is, 
the monitoring and regulation of thinking (Flavell 
1979). To promote mathematical meaning making, 
Mr. Larson interspersed metacognitive suggestions 
at pivotal points throughout the episode. Other types 
of feedback and questioning set up an environment 
that could support these metacognitive processes. 
For example, “Nice job” and “Yes, that makes sense” 
reinforced speaker engagement. “What is an abun-
dant number?” sought an explanation or definition. 
“Why?” encouraged further exploration or justifica-
tion. The dialogue is annotated to illuminate goals.

DISCOURSE IN MR. LARSON’S  
MATHEMATICS CLASS
When asked about the teaching episode, Mr. Larson 
said that he had been motivated by an interesting 
problem he had seen in a mathematics competition:

Find the sum of the reciprocals of all the factors 
of 28 (i.e., 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 
56/28 = 2). 

While working through the problem himself, Mr. 
Larson had noticed a relationship to perfect num-
bers. His own curiosity led him toward goals for 

his students—that is, getting his students to “think 
about numbers, think about relationships, be sur-
prised by something, and then . . . test it out.” 

To guide discovery, Mr. Larson adopted an 
inductive model of teaching (see fig. 1). First, he 
introduced a slightly modified problem to his class:

What is the sum of the reciprocals of the prime 
or composite factors of 28? 

This problem served as an initial frame of reference 
from which the rest of the episode was built.

Next, Mr. Larson facilitated a discussion to estab-
lish shared meaning about the frame of reference. 
The discussion was used to clarify the problem and 
ensure shared understanding of the vocabulary 
necessary for the problem—that is, prime numbers 
and composite numbers. He encouraged students to 
express their own understanding by using verbal 
feedback and questioning to promote an accurate 
understanding of the definitions. For example, 
when a student offered as a definition of prime 
numbers “Numbers that can be divided by only one 
and itself,” Mr. Larson facilitated an exchange of 
ideas using examples and counterexamples to illus-
trate that the number 1 is neither prime nor com-
posite. As a result, a student restated the definition 
to include this qualifier: “It has exactly two different 
factors.” Ensuing dialogue helped the students agree 
on a more precise definition of prime numbers. 
Similar discussion was used to reach consensus on a 
definition of composite numbers. 

Mr. Larson then asked the students to work in 
small groups to investigate the problem. During the 
small-group work, Mr. Larson listened and observed, 
identifying students who might need assistance and 
also those whom he might call on to contribute to a 
meaningful discourse during the large-group discus-
sion. When the whole group reconvened, a student 
volunteered to share his solution. 
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Fig. 1  inductive model of teaching
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David. First, I wrote out all the factors I knew of 28 
[lists 1, 2, 4, 7, 14, and 28].

Mr. L. Yes. This makes complete sense, to start 
with a list of all the possible factors.  [This com-
ment reassured the student (and the rest of the 
class) that the process he used was mathematically 
sound and confirmed the accuracy of his list.]

David. Then I figured out the prime ones; 2 and 7 
are the prime factors. And 4, 14, and 28 are the 
composite ones [circles numbers as he says them]. 
So I turned those into their reciprocals [shows 
reciprocals: 1/2, 1/4, 1/7, 1/14, 1/28]. And then 
for easier adding, I just flipped them all into 
28ths [shows equivalent fractions with denomina-
tors of 28: 14/28, 7/28, 4/28, 2/28, 1/28].

Mr. L. Yeah. [This response signified that Mr. L. was 
following the explanation and that the speaker 
should continue.]

David [adding the fractions on the white board]. And 
then when I added them up I got 28/28, which 
is 1.

After the student completed his explanation, the 
class, by consensus, agreed that the sum of the 
reciprocals of the prime and composite factors of 
28 equals 1. 

Mr. L. That’s sort of surprising that it would actu-
ally be 1. I wonder if that’s always true. [This 
comment modeled metacognition, that is, it pro-
vided a window into Mr. L.’s thinking about math-
ematics and encouraged the students to monitor 
their own thinking.]

Mr. Larson then suggested that the students try a 
different number to test this idea.

Mr. L. I’m going to try another. I’m going to try 6. 
Somebody said something about 6. [Mr. L. knew 
that 6 would work because it, like 28, was a perfect 
number. This helped set up a situation to serve as a 
springboard for further exploration and discussion.]

Next, Mr. Larson guided classroom discussion to 
demonstrate that the sum of the reciprocals of the 
prime or composite factors of 6 also equals 1. At 
this point, Mr. Larson orchestrated the introduc-
tion of a hypothesis related to the problem.

Mr. L. Whoa! So what should we call this? Should 
we call this the Hankins Hypothesis or what? 
[Hankins was David’s last name.] You want 
credit for it, David? [Mr. L.’s “surprised” reac-
tion marked the result as noteworthy and was, in a 
limited sense, modeling metacognition. Using the 
student’s name reinforced his contribution.]

David. Definitely.

On the board, Mr. Larson wrote the Hankins 
Hypothesis: The sum of reciprocals of the prime 
and composite factors of a number will always  
be 1. 

[Although Mr. L. knew that only perfect numbers 
would yield a result of 1, the “hypothesis” provided 
a vehicle for further investigation. In his interview, 
Mr. L. noted that he hoped that his students would 
discover that the “hypothesis” worked only for perfect 
numbers.]

Next, the frame of reference was revised to con-
sider not only the original problem but also new 
understandings that had been discussed—that is, 
the Hankins Hypothesis. The inductive process 
continued as Mr. Larson asked students to work in 
small groups to test the hypothesis.

Mr. L. We’ve seen two examples now where it 
works. I’m sort of surprised . . . I don’t know 
why it would work, but it seems to work . . . 
[Mr. L. modeled metacognition as he reflected on 
the mathematics, thus encouraging students to 
monitor their own thinking.]

Mr. L. Would you guys check it out? Would you 
each take some other number and check it to see 
if, in fact, it does work? [This suggestion under-
scored further exploration.]

Mr. Larson circulated among students, listen-
ing and asking questions. When a student said, “It 
doesn’t work for primes,” Mr. Larson asked him 
to think about why that might be so. Mr. Larson 
called the class’s attention back to the whole group 
and asked, “Okay, so what did you discover?” 
When students reported specific numbers that did 
not work, Mr. Larson, instead of abandoning the 
hypothesis, suggested that these cases might be 
exceptions to the Hankins Hypothesis. Exceptions 
to the hypothesis—for example, that the hypothesis 
does not work for primes or that the hypothesis 
does not work for perfect cubes—were documented 
on the board and named after the students who 
offered them. The verbal exchanges continued until 
a student said, “It didn’t work for 36, which is an 
abundant number.”

Mr. L. [dramatically]. Whoa! A what? 
David. An abundant number.
Mr. L. An abundant number! What is an abundant 

number? [This query sought an explanation of a 
term that was unfamiliar to many of the students 
and helped facilitate shared meaning. In addition, 
it provided an opportunity for peer teaching.]

David. When the factors of the number add up to 
more than the number itself.
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A discussion followed that clarified the definition of 
abundant numbers and, further, led to the introduc-
tion of and discussion about deficient numbers and 
perfect numbers. In summary, the Hankins Hypothe-
sis provided a revised frame of reference that served 
as a basis for exploring connections between the 
original problem and other mathematical ideas—
that is, abundant, deficient, and perfect numbers.

Students verbalized connections between 
numerical concepts, the hypothesis, and the origi-
nal problem. For example, a student made a con-
nection between his newly acquired knowledge of 
deficient numbers and the Hankins Hypothesis. 
In addition, students were able to identify the two 
numbers that worked for the original problem (i.e., 
28 and 6) as perfect numbers.

Mr. L. Perfect number. Well, anybody know any 
perfect numbers? Daniel? [This question encour-
aged connections with the original problem, the 
hypothesis, and perfect numbers.]

Daniel. Six. [Recall that the number 6 worked for the 
Hankins Hypothesis.]

Mr. L. Six is a perfect number. Huh! . . . and . . . 
Arthur? [This comment reinforced connections 
and validated the student’s response.]

Arthur. Twenty-eight. [Recall that 28 was the num-
ber introduced in the original problem.]

Mr. L. Twenty-eight is a perfect number. Mmm-
mmm. [Again, this response reinforced connections 
and validated the student’s response.]

In the end, the Hankins Hypothesis was modified 
to incorporate the revised understanding.

Mr. L. David, would you like to modify the Hankins 
Hypothesis? [This invitation gave authority to 
the student and facilitated connections among the 
initial frame of reference and the revised frames of 
reference.]

David. They have to be perfect numbers, not just 
any number.

Mr. L. Let’s see here! . . . So the sum of the factors 
of prime and composite [reads from board as he 
writes] . . . sum of the reciprocals of prime and 
composite factors of a perfect number will be 
one. [This statement summed up the connections 
made within the episode.]

The episode concluded with Mr. Larson challeng-
ing the students to find the next perfect number and 
see if it fit the newly revised Hankins Hypothesis. 
The verbal interactions resulted in new mathemati-
cal meaning being voiced by the students. Before 
this lesson, most of the students in the class had 
been unfamiliar with abundant, deficient, and per-
fect numbers. They now had a sense of their prop-

erties. Perhaps more important, the students had 
developed new meaning about mathematical explo-
ration and discovery. As noted in Mr. Larson’s pre-
viously stated goals, they were able to “think about 
numbers, think about relationships, be surprised by 
something, and then . . . test it out.”

AN INDUCTIVE MODEL OF TEACHING
The analysis of Mr. Larson’s classroom dialogue 
revealed an inductive model of teaching that pro-
moted dialogic discourse. Mr. Larson used verbal 
feedback and questioning to move students through 
recursive, inductive cycles rather than through a 
linear set of steps. In the first cycle, a rich problem 
was introduced (providing a frame of reference), 
shared meaning of neces-
sary components of the 
problem (e.g., vocabu-
lary) was established, the 
problem was explored, 
the problem was solved, 
and then the problem 
served as a springboard 
for developing and testing 
a hypothesis. The cycles 
continued recursively, 
building from the out-
comes of the first cycle. 
The solution to the prob-
lem and the accompany-
ing hypothesis served as a 
revised frame of reference, 
the hypothesis was investigated and tested, new 
concepts were introduced, shared meaning of the 
new concepts (e.g., abundant numbers) was estab-
lished, connections were made to the original prob-
lem, the hypothesis was revised, and new math-
ematical meaning was generated. To summarize, 
the inductive model includes recursive cycles that 
use a frame of reference as a foundation to estab-
lish shared meaning, to investigate, to conjecture, 
and to build new meaning progressively. It is called 
inductive because it moves from a specific case, 
through conjectures, toward more general hypoth-
eses, rules, and relationships. 

The richness of the discourse in Mr. Larson’s 
mathematics class was a result of using both uni-
vocal discourse (conveying ideas) and dialogic dis-
course (generating new meaning) to build meaning 
progressively, with an overall outcome that tended 
more toward dialogic. Mr. Larson orchestrated dis-
course that established necessary shared meaning 
but then strategically infused metacognitive feed-
back and questioning that pressed toward new 
understandings. Although it is likely that other 
models of teaching could promote mathematical 
understanding, the inductive model seems a  

Goals for students  
included getting his 
students to “think 
about numbers, think 
about relationships,  
be surprised by  
something, and then . . . 
test it out”
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tial component of mathematics teaching and learning. 
We believe that there are lessons to be learned from 
Mr. Larson that may provide hints for orchestrating 
discourse that supports mathematical understanding.
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promising one to consider, especially when used in 
conjunction with thoughtfully orchestrated 
discourse.

IMPLICATIONS FOR CLASSROOM 
PRACTICE
Certain practices and dispositions associated with 
Mr. Larson’s teaching have implications for class-
room practice. A few examples follow.

•	 The problem resulted from Mr. Larson’s curios-
ity and his practice of doing mathematics him-
self. A teacher’s disposition toward mathematics 
may influence his or her classroom dialogue and, 
as a result, how the mathematics is taught and 
how it is learned. In effect, a teacher’s disposi-
tion may influence students’ learning outcomes.

•	 Mr. Larson’s stated intentions were aligned with 
dialogic outcomes—that is, his goal was to facili-
tate “guided discovery.” Although intentions 
are not a guarantee of success, what a teacher 
intends does matter. For example, Mr. Larson 
was more likely to achieve dialogic discourse 
through guided discovery than would a teacher 
with univocal intentions.

•	 Mr. Larson facilitated discourse that moved back 
and forth between whole-group and small-group 
talk. Meaningful discourse may benefit from 
orchestration of various talk formats.

•	 The discourse moved from relatively univocal 
(while building shared meaning) to relatively 
dialogic (as new meaning was generated). It may 
be productive to build shared meaning about the 
mathematics before pressing toward metacognitive 
processes. Once shared meaning is established, 
strategically interspersing metacognitive feedback 
and questions may help students monitor their 
own thinking actively—potentially promoting dia-
logic discourse and mathematical understanding.

•	 The solution to the problem was not an end 
in itself; it served as a springboard for moving 
beyond the problem, making connections to 
mathematical concepts and ways of thinking. As 
noted by NCTM (2000), “Interesting problems 
that ‘go somewhere’ mathematically can often be 
catalysts for rich conversations” (p. 60).

The cyclical-recursive nature of the discourse 
allowed the students to explore a problem, develop 
hypotheses, test them, revise them, and build math-
ematical understanding. Pirie and Kieren (1989) 
noted that mathematical understanding “is a recur-
sive phenomenon” and occurs “when thinking 
moves between levels of sophistication” (p. 8). The 
recursive cycles of the inductive model may facili-
tate mathematical understanding. 

NCTM has noted that communication is an essen-


